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1. INTRODUCTION

The Bernstein-type integral operators discussed in this paper are given
by

Mnf=Mn(/,x)=(n+l) f Pn.k(x)rPn,k(t)f(t)dt, (1.1)
k~O 0

where Pn.k(X) = (k)xk(l - x t - k. The expression (n + 1) Sb Pn,k(t) f(t) dt in
the operators Mnf takes the place of the expression f(k/n) in En/, the
Bernstein polynomials. These operators were introduced by Durrmeyer [6]
and studied by Derriennic [2]. It was shown that Mnf are positive con­
tractions in L p and are self-adjoint and commute, that is,
MnMkf= MkMnf These nice properties of Mnf make them easier to
work with. In this paper we will study the relation between derivatives of
M n /, the rate of approximation of M n , and the smoothness of the function
f The smoothness off is given, following [5], by

(J)~(f, t)p= sup 11L1~q>fIILp[O,I]'
O<h<:;t
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cp(x) = (x(l- X»I/2, (1.2)



where
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LI~f(x)=O, otherwise.

(1.3)

We will construct an operator Onf using linear combinations of Mnf and
show, for r>rx (and qJ(x) as above), that

Section 2 will contain a short discussion of w;;(f, t)p and the related
K-functionals. Section 3 will contain the necessary facts proved in earlier
papers (see [2J) on Mnf In Sections 4 and 5 we establish the estimates of
IlqJ2rM~2r:fIIp and IIOnf- flip by nrw;;(f, l/~)p and w2,;U, l/~)p, respec­
tively. The inverse results of (1.4) are obtained in Section 7, where

rx < 1, (1.5 )

is also established. We note that (1.5) is valid for rx < 1 while (1.4) is valid
for rx < r.

2. RESULTS ON MODULI OF SMOOTHNESS

For proof of our results we will utilize the K-functional characterization
of w~(f, t)p- The K-functional in question is given by

(2.1 )

where the infimum is taken on all g such that g(r-l) E AC10c (i.e., absolutely
continuous in [a, bJ for every a, b satisfying 0 < a < b < 1).

It was proved in [5, Chap. 2J that

(2.2)

which we denote by w~(f, t)p ~ Kr(f, tr). A different characterization of
smoothness was given by rAJ, ljJ(t))p,p,

. _[r1 1 fljJ(t·X) r p .. ll/p
rr(f; ljJ(t))p,p - J. ~(t) ILlJ(x)[ dv dXJ '

o 'I' ,x -1jJ(t,x)

rAf; ljJ(t))oo = sup{ jLli;J(x)l; h ~ ljJ(l, x), x E [0, I]},

p< 00,

(2.3 )
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where L1iJis given by (1.3) and l/J(t,x)=t<p(x)+t2. It was shown in [8]
that rr(f, l/J(t))p,p is also equivalent to Kr(f, t')p. The modulus rAj, t)p can
be used in this paper as an alternative to OJ~(j, t)p.

We define, for <p(x) = (x(1 - x)) 1/2,

[«(j,tr) = inf (Ilf-gil +trll<prg(r)11 +t2r llg(r)ll) (2.4)
p g(,-I)EACloc p P P

and we will also use the equivalence [5, Chap. 3]

which is stronger than (2.2).

3. PROPERTIES OF Mnf

For the convenience of the reader we will summarize here the properties
of Mnf and related formulae which will be needed later. Most of these can
be found in [2].

A. M n f is a positive operator.

B. Mn(l, x) = 1, Mnfpreserves constants.

C. IIMn.f1lp~ Ilfll p , 1~p~ 00, Mnfis a contraction on Lp[O, 1].
D. For fEL 1 [O, 1]

where Qm is the Legendre polynomial of degree m, i.e.,

for m~ 1 and Qo(x)=I;

(3.2)

and

A = -:-------,(...,...n,-+,-1-,-)!_n_!----c-:-:­

n,m (n-m)!(n+m+l)!

E. For a polynomial P k of degree k MnPk is a polynomial of degree
min{k,n} [2, p. 337].

F. M n commutes with M kl
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G. Forj,gEL 1[O,1]

75

(M"j, g) =Jl M,,(f, t)g(t) dt=rj(t)M,,(g, t) dt= (f, Mng)· (3.4)
o 0

(~)' Mn(f, x)

(n+1)!n! ,,-r Jl
= (-1)' ( _ )' ( )1 I P,,_r,k(X) P;;L,k+r (t)f(t) dt. (3.5)

n r. n+r'k~O 0

I For jE L [0 1] j(2r-l) E AC and (fl2j(2r) E L we have using. 1 , , loc' 't' 1 ,

integration by parts,

(n ..L 1) I n1 ,,- 2r 1
- I.. '"' f t (2r) I-( -2 )'( +2)11.. P,,-2r,k(X) Pn+2r,k+2r(.)j (t,dt,

n r. n r. k~O 0

which can be rewritten as

(3.6)

(
d )2r

q>(x)2r dx M,,(f, x)

n- 2r 1

= (n + 1) I a(n, k)P",k+r(X) JPn,k+r(t)rp(t)2r j(2r)(t) dt, (3.7)
k~O 0

where

(k+rW (n-k-rW
a(n, k) = < 1.

k! (k+2r)! (n-k)!(n-k-2r)!

4. THE DIRECT RESULT FOR q>2rM(2rlj

To show the direct part of

we will prove the following more general direct result.
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THEOREM 4.1. For fELp[O, 1], 1~p~ 00, w2;;(f, t)p given by (1.2), and
<p(X)2 =x(1-x) we have

11<p2rM~2r~fIILp[O,I] ~ Mn rw2;;(f, 1/~)p. (4.1)

In fact, in view of (2.2), that is, K 2r(f, t2r )p '" w2;;(f, t)p, it will suffice to
prove the two inequalities given in the following two lemmas:

LEMMA 4.2. For gEL [0 1] g(2r - I) E AC and rn 2rg(2r) E L [0 1] wep , , loc' 't' P ,

have

II 2rM(2r) II ~ II 2r (2r)11<p n g Lp[O, I] "" <p g Lp[O, I] .

LEMMA 4.3. For fELp[O, 1]

II <p2rM~2r~f11 Lp[O, I] ~ Mnr Ilfll Lp[O, I]'

(4.2)

(4.3)

(4.4)

Proof of Lemma 4.2. As a corollary of (3.7) and C of Section 3 we write

11<p2rM~2r)gllp ~ II (n + 1) :~: Pn,k+r(X) ( Pn,k+r(t) <p(t)2r g(2r)(t) dtt

~ II (n + 1) f Pn,k(X)rPn,k(t) 1<p(t)2r g(2r)(t)1 dt II
k~O 0 I p

= IIMn(I<p2rg(2r)l)IIp ~ 11<p2rg (2r)ll p,

which completes the proof of the lemma.

Proof of Lemma 4.3. To prove (4.3) we divide [0,1] into two parts,
En=[1/n,I-I/n] and E~=[0,I/n]u[I-I/n,1], and prove (4.3)
separately for Lp(En) and Lp(E~). For the proof on Lp(E~) we observe

(
d)2r n' n-2r
dt Mn(f, t)= (n-~r)! k~O Pn- 2r,k(t) j2rak(n),

where

(4.5)

and

Since

and

and n! ~ 2r
(n -2r)! ""n ,
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we have

If we prove now for 0 ~j ~ 2r

II n- 2r 1 II(n + 1) L Pn- 2r,k(t) fa Pn,k+j(x)/(x) dx _ ~ C 1I/IILp [o,lJ'
k~O L p LO,lJ

we will obtain

To prove (4.7) for p = 00, we observe that

II n-2r 1 III (n + 1) k~O Pn- 2r,k(t) fa Pn,k+ix)/(x) dx L oo [O,lJ

n ~ 2r

~ lillie", L Pn - 2r,k(X) = 11/1100'
k~O

For p=l (recall n~2r~j) we derive (4.7) by

77

(4,

II
(n + 1) nfr Pn-2r.k(t)rPn,k+i x ) /f(x)1 dx II

k=O 0 Ll[O,l]

n+1 f1{n-2r } (n+l )
=n-2r+1 0 k~O Pn,k+ix ) I/(x)ldx~ n-2r+1 11/111'

Using now the Riesz-Thorin theorem, we establish (4.7) for 1~p~ 00.

We now prove (4.3) in Lp(En ). It is sufficient to prove the result for
p = 00 and p = 1 as we can use the Riesz-Thorin theorem to obtain from
these special cases the result for 1<p < 00.

For L oo we follow the proof of Lemma 3.5 of [3, p. 282] observing that
here we use I(n+ l)ak(n)1 ~ 11/1100 (see (4.5)) instead of I/(k!n)~ 11/1100'

For the L 1 estimate we again follow the proof of Lemma 3.5 of [3] and
observe that we have to estimate terms of the type

n

I(l, m, n) = Ilq"m(x)cp(xf' -
2r n' L (k-nx)2r-21-mak(n)Pn,k(x)IILt(En)'

k~O
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where ql,m(X) is a polynomial in x independent of n or k and
O~m~2r-21, O~l~r. We will show

f cp(x)2/-2rn'lk_nxI2r-2/-m Pn,k(x)dx~Cnr-l, (4.8)
En

and therefore

n

I(l,m,n)~Clnr-1 L: lak(n)1
k=O

~Clnr f rPn,k(t) II(t)1 dt=C1nr 111111'
k~O 0

To prove (4.8) we recall that

Ik - nxI2r-2/-m ~ Ik - nx1 2r - 21 + 1

and

and therefore, it is sufficient to show

(4.9)

Inequality (4.9) was proved in [5, Chap. 9].

5. DIRECT THEOREM FOR AN ApPROXIMATION OPERATOR

In this section the direct theorem about an approximation operator will
be proved pending several lemmas, which are of a technical nature and
which will be proved in Section 6. The operators we utilize will satisfy

2r-1
Onl= On(f, x) = L: r4n)Mn,.(f, x),

i~O

where A is independent of n,

nO=n<n l < '" <n2r - 1~An,

(5.1 )

for m=1, ...,2r-1 (5.2)



BERNSTEIN-TYPE OPERATORS

(which means that polynomials of order 2r -1 are preserved), and

2r-l

L [a;(n)[ ~B,
;=0

79

(5.3 )

where B is independent of n. Note that On/, a;(n), A, and B change with
choice of r. In the next section we will show in a constructive manner that
such operators exist.

We will also need the following two lemmas which will be proved in the
next section.

(<p(x?=x(l-x)).

LEMMA 5.1. For Tn,m(x) == Mn((x -. )m, x) we have

[Tn,2ix )1 ~ Cn~s (<p(X)2 +~y

LEMMA 5.2. For Hn,m(u) given by

Hn,m(u) == (n + 1)m{fr-rf}
u 0 0 u

n

x(u_t)m-l L Pn,k(t)Pn,k(X)dtdx,
k~O

we have

m>O,

(5.4 )

(5.5)

We also need the following lemma.

(5.6)

LEMMA 5.3. Suppose
<p(X)2 = x(1- x). Then

O~x~ 1, IX> 0,

Proof For x = 0 or x = 1 the result is triviaL For 0 < x < u < t ~ 1 we
have u > x, a/(I- u) > a/(I- x), and therefore, 1/(u + a/(1- u)) <
1/(1 + a/(I- x)). We also have (t - u)/(I- u) < (t - x)/(1- x) and t - u ~
t - x, and therefore,

640/56/1-6
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For 0:(t<u<x<1 we use (u-t)/u«x-t)/x and 1/(1-u+(cx/u))<
1/(1-x+(cx/x)) to obtain the same result.

We are now in a position to prove the direct result.

THEOREM 5.4. Suppose OJ satisfies (5.1), (5.2), and (5.3). Then for
1 :(p:( 00 and cp(x)z=x(1-x)

(5.8)

Proof We observe that (5.3) implies

Using KzAf, tZr)p"'Kzr(f, tZr)p proved in [5, Chap 3] (see also (2.1), (2.4),
and (2.5)), it is now sufficient to show for g(r-l)EAC and g(r) in Lp that

IIOng- gllp:( L1n- r II (cpz +~)' g(Zr)t
:(Lz(n- r Ilcpzrg(Zr)llp+n- zr Ilg(Zr)ll p ). (5.9)

We expand g by the Taylor formula

(t_x)Zr-l
g(t)=g(x)+(t-x)g'(x)+ ... + (2r-1)! g(Zr-l)(x)+Rzr(g,t,x),

where

1 IIRzr(g, t, x)= (2r-1)! x (t_u)Zr-l g(Zr)(u) duo

The identities in (5.2) now imply

and therefore, using (5.1) and (5.3), it is enough to show
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In fact we have to show this only for p = 00 and p = 1 and by the
Riesz-Thorin theorem it will follow for 1< P < 00; but the proof for p = 00

and that for 1<p~ 00 are the same. Using the Riesz-Thorin theorem,
however, it is clear that L 3 in (5.10) is independent of p. To prove (5.10) we
recall the definition of the maximal function of ljJ, JIt (ljJ, x), given by

JIt(ljJ, x) = sup 1_1
_ r IljJ(u)ldu!.

t t-x x I

We define for ljJ given by ljJ(u) = (<p(u)Z + IlnY g(2r)(u) for U E [0, 1] and
ljJ(u)=O otherwise, JIt(ljJ,x)=G(x). Using Lemma5.3 with rx=l/n, we
obtain

and therefore,

We complete the proof for 1 <p ~ 00 by recalling that the estimate

is in fact Lemma 5.1, and that the estimate

for 1<p ~ 00 is the well-known result on maximal functions. To prove
(5.10) for p = 1 we write, using Fubini's theorem,

f IMn(Rzr(g, ., x), x)1 dx

(n+l) 11 n II
~ (2r-l)! 0 k~O Pn,k(X) 0 Pn,k(t)

X If (t_u?r-l Ig(Zr)(u) Idul dtdx
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n+1 fl {Jlfu fUJI}_ Ig(2r)(u)l-
(2r-1)! 0 U 0 0 u

n

x(u_t)2r-1 L Pn,k(t)Pn,k(X)dtdxdu
k=O

Lemma 5.2 will now conclude the proof of (5.10) for p = 1.

6. LEMMAS ON Onf AND Mnf

As Onfwould not be the operator with the minimum number of terms
satisfying IIOnf-fllp~Cw~(j;1/J';;)p anyway, we will construct a
relatively simple version of it. That is, we assume that ni = 2in,
i = 0, ..., 2r - 1. First we will need the following lemma.

LEMMA 6.1. For Mnf given in (1.1) we have

m ,

Mn((·-x)m;x)= L P,(x) TI (1/n+i+1),
'=1 f~ 1

where P ,(x) are polynomials in x independent of n.

Proof We calculate first Mn(fi, x) for /;(t) = ti,

m=1,2, ..., (6.1)

Mn(fi, x) = (n + 1) f Pn,k(X)rPn,k(t) t i dt
k~O 0

n n!(k + i)! II
= (n + 1) L Pn,k(X) ( + ')'k' Pn+i,k+i(t) dt

k~O n I . . 0

= ~ P (x)_(k_+_1_)_.. _.(_k_+_i)_
k'::O n,k (n+2) ... (n+i+1)'

We observe that

i-2 j

(k + 1) ... (k + i) = k(k - 1) ... (k - i + 1) + L: Cj+ I TI (k -I) + Co,
j=O '=0
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where for i = 1 the second term drops, and obtain

MnUi,x)=((n+2)· .. (n+i+1))~1

x[xin ... (n - i + 1) + II2

Cj + 1 x j + 1n ... (n - j) + Coj.
)=0

83

Expressing n··· (n -I) in terms of n + 2, (n + 2)(n + 3), ... and their com­
binations and writing (t-x)m=L7'~o(7)(-x)m-iL we obtain (6.1).

LEMMA 6.2. For ni = 2in, i = 0, 1, ..., 2r - 1, there exist o!;(n) such that
OnU, x) given by (5.1) satisfies (5.2) and (5.3) and moreover a;(n) ~ ai.

Proof Using Lemma 6.1, we have to calculatecti(n) satisfying (for n big
enough)

2r~ 1

L cti(n) = 1
t=O

and
2r~ 1 s

L ctt(n) TI (2 in+I)-I=O, s=2, ...,2r.
i~O 1~2

(6.2)

Using Cramer's rule and the Vandermonde determinant, we observe that
for at satisfying

2r-l

L ai =l
i~O

and
2r-l

" a2- im =0L. I ,

t~O

m=1, ... ,2r-l, (6.3)

we have a solution and that a;(n) = ai + O(1jn).

To complete the proof of Theorem 5.4 we still have to extablish
Lemma 5.1 and Lemma 5.2. We will prove a somewhat more general result
which will be needed internaly in the proof of these lemmas as the proof is
by induction. Lemma 5.1 is an immediate corollary of the following lemma.

(6.4)

and

(65)

where qi,s,n(X) and Pi,sjX) are polynomials in x of fixed degree with coef­
ficients that are bounded uniformly for all n.
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s>O, (6.9)

Proof The proof follows by a simple induction process from the known
recursion relation [2],

(n +m + 2) Tn,m+ I(X) = x(l-x)[2mTn,m_l(X) - T~,m(x)]

- (1- 2x)(m + I)Tn,m(x) (6.6)

and the fact that Tn,o(x) = 1 and Tn, 1(X) = - (1 - 2x )/(n +2).

Remark. We can observe that qi,s,n(X) are divisible by (1- 2x) and that
PO,s,m(x) and Qo,s,n(x)/(I- 2x) are constant in x.

Lemma 5.2 is an immediate corollary of the following lemma.

LEMMA 6.4. Suppose Hn,m(u) is given by (5.5) of Lemma 5.2. Then

Hn,m(u)=n i Pn+1,k(U)r(u-t)mPn_l,k_l(t)dt+un+l(u_l)m
k~ 1 0

+(I-ut+ 1um, (6.7)

(n + m + 1)Hn,m+ l(U) = u(l- u)[2mHn,m_l(U) - H~,m(u)]

- (1 - 2u)mHn,m(u), (6.8)

s-1 (X(I_X))S-i.
H n,2,(U) = i~O Pi,s,n(x) n n- 2',

and

s-1 (X(I_X))S-i-l -2i+l

H n,2s-1(U) = i~O Qi,sjX) n n, s>O, (6.10)

where Pi,n,,(x) and Qi,n,s(X) are polynomials in x with coefficients bounded
in n.

Proof We first deduce (6.7) from (5.5), then (6.8) from (6.7), and after
computing Hn,I(U) and H n,2(U), (6.9) and (6.10) will follow (6.8) by induc­
tion, as (6.4) and (6.5) followed (6.6). We could have set Hn,o(u) = 1 as
indeed follows from (6.7), and as (6.8) is a corollary of (6.7), we may
calculate only H n,l(U), but since Hn,o(u) is not defined by (5.5), we
calculate H n ,2(U) as well.

We now write
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fu n fU ru

=m (U_t)m-l L Pn,k(t)dt-(n+l)m J (U_t)m-l
o k~O 0 0

n

X L Pn,k(t)Pn,k(X) dt dx
k~O

From the above we can easily calculate

85

and
2

H m 2(U) =--2 u(l- u),
, n+

(6,11 )

We now recall that P~,k(X) = n(Pn-1,k-l(X) - Pn-1,k(X)) and obtain, using
integration by parts,

m f: (u-t)m-1pn,k(t)dt

= _(u-l)mPn,k(l)+umpn,k(O)+n ((u-t)m

x [Pn-1,k-l(t)-Pn-1,k(t)] dt.

Recalling that Pn,k(1) = bn,k and Pn,k(O) = bo,b and using the expression for
Hn,m(u) that We calculated, we have

-n(n+ 1) f:( (u- t)m

n

X L Pn,k(X)[Pn-1,k-l(t) - Pn-1,k(t)] dt dx
k~O
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-n(n+ 1)r(u-t)rn
o

xrnfl [Pn,k+ l(X) - Pn,k(X)] Pn-1,k(t) dx dt
o k~O

= (u _l)m Un+ 1 +um(l- ut+ 1

1 n-l
+n I. (u-t)m I Pn+1,k+l(U)Pn_1,k(t)dt,

o k=O

and therefore, (6.7).
To prove (6.8) we write

and observe that (6.8) is valid for Ln,m(u) in place of Hn,m(u). This is done
using straightforward computations. That is,

u(l- u{2mun+1(u_l)rn- 1+ 2m(l- ut+1Um- 1

-~ {un+l(u_l)m + (1- ut+ lUm}]
du

- (1- 2u)m[un+l(U _1)rn +(1- ur+ lUm]

= m[ _un+2(u _l)m + (1- ur+ 2 um]

+ (n + 1)[un+l(U _l)m+ 1+ (1- u)n+ lUm+1]

+ m[un+l(U _l)rn+ 1 + un+2(u _l)m

- (1 - ur +2 Urn + (l - ur + 1Urn +1]

= (n +m + 1)[un+1(u-l)m+ 1 + (l-ur+ lUm + 1].

We now need to prove (6.8) for Hn,m(u) - Ln,m(u) =. An,m(u). Recalling

u(l- U)P~.k(U)= (k - nu)Pn,k(U),

we write for An,m(u) as above

n 1

=nu(l-u) I P~+l,k(U)f. (u-t)mpn_1,k_l(t)dt
k=l 0
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=n f Pn+1,k(U) f (U-t)m(k-(n+1)U)Pn_l,k_l(t)dt
k~ 1 0

=n f Pn+1,k(U)f (U-t)m [«k-1)-(n-1)t)
k~ 1 0

- (n -1)(u - t) + (1- 2u)J Pn-1,k-l(t) dt

=n f Pn+l,k(U)f(u-t)mt(1-t)P~_1,k_l(t)dt
k~ 1 0

- (n - 1)An,m+ l(U) + (1- 2u)A n,m(u)

=n f Pn+1,k(U) f {m(u-t)m- 1t(1-t)
k~ 1 0

- (1-2t)(u- t)m}Pn_1,k_l(t) dt

- (n - 1)An,m+ l(U) + (1 - 2u)A n,m(u)

=n f Pn+1,k(U) f {-(m+2)(u-t)2
k~l 0

- (m + 1)(1 - 2u )(U- t) + mu( 1 - u) }

x (u - t)m-l Pn-1,k-l(t) dt - (n - 1)An,m+ l(U)

+ (1- 2u)A n,m(u) = - (n + m + 1) An,m+ l(U)

- m(1- 2u)A n,m(u) + mu(1- u)An,m-l(U),

which is what we wanted to prove.

7. THE INVERSE RESULTS

In this section we will deduce the bahaviour of w~(j; t)p from the
behaviour of 11<p2rM~2r~llp or that of IlL iJ.iMn,f-fllp.

THEOREM 7.1. Suppose fELp[O,1], Mnf is defined by (1.1),
<p(X)2 = x(l- x), and iJ. ~ r. Then

11<p2rM~2rlfll =O(nr-~)<=>w~(f, t)p=O(t2~). (7.1)

Proof The implication "<:=" was proved in Theorem 4.1, and in fact a
more general result was shown. To prove the implication "=" we will show
that for any k

(7.2)
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where B may depend on rand ()( but not on k (and certainly not on n). This
will be sufficient as we write

w'?;(f, t)p ~ w'?;(f- Mkf, t)p +w'?;(Mkf, t)p ~ C Ilf- Mkll p+ ABt2~

and let k tend to 00.

Using [5], w'?;(f, t)p ~ K2Af, t)p (see (2.2)), and the definition of
K2r(f, t2r )p, we have

K2r(Mkf, t2r )p ~ IIMkf- OnMkfll p+ t2r II cp(t)2r (~rr On(Mkf, t) t·
We choose On to be that given in Theorem 5.4, and therefore,

IIMkf- On M kflip ~ L 1w'?;(Mkf, 1/~)p ~ LK2r(Mkf, n-r)p,

where L is independent of nand k. Moreover, using the definition of On,
we have

Lemma 4.2 and formula (3.3) will now imply

~ Ilcp2rMi2r~fIIp~Ar-~.

Writing 2in for I, and combining with the above, we obtain

K2r(Mkf, t2r )p ~ L 1 K2r(Mkf, n -r)p + A2t2rnr-~.

We choose n such that 1/~~ tlR <1/~ where R is to be chosen
later and obtain, repeating the argument m times,

K2r(Mkf, t2r )p ~ L 1K2r(Mk f, (tIR)2r)p + A2R2rt2~

~ Li K2r(Mk f, {tIR)4r)p + A2R2rt2~ + A2R2rLl(tIRf~

~ L'[' K2r(Mkf, (tIR)2mr)p

+ A2R2rt2~(1 + LdR2~ + ... + (LdR2~)m-l).

We choose R (R ~ 1) such that LdR2~~ 112 and recall, using Lemma 4.3,
that

L'[' K2r(Mkf, (tlR)2mr)p ~ L'['(tlR)2mr II cp2rMprYll p

~ L'['(tIR)2mr Ckr IIfli p.
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Since k is fixed and L dR 2r ~ 1/2, we have

lim Lr;' K 2AMk f, (t/Rfmr)p = O.
m- 00

Therefore,

which concludes our proof.

THEOREM 7.2. Suppose

kl

Onf= I rxi(n)Mn,f, n=no<n j ••• <nk~An and
i~O

Then
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(7.3 )

for r> rx. (7.4)

Remark. Note that the requirement that Onf actually approximates f is
hidden in IIOnf-fllp=O(n-~) and that condition (5.2) of Theorem 5.4 is
not necessary.

Proof Using the K functional (rather than OJ~(f, t)p), we write

K2Af, t2r )p ~ II Onf-flip + t2r 11!p2rO~2rlfllp.

Theorem 4.1 now implies

Ilo/2rO~2rlfl/ ~B max l/o/2rM:;rlfll ~B·Mw~(f, 1/j;;)p
n~m~An

As our assumption is IIOn!-!llp~An-~, we have

K2r(f, [2r)p ~ An -~ + e[2rK 2r(f, n -r)p,

and this implies, via the Berens-Lorentz lemma [1 ], that if IX < r,
K 2r(f, [2r)p~ C 1 [2".

We now have as a corollary:

COROLLARY 7.3. For On! given in Theorem 5.4 and rx < r

(7.5)
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We also have as a result (partially a corollary) the following direct and
inverse theorem on Mnf

THEOREM 7.4. For Mnf given in (1.1), 1~p ~ 00, and IX < 1

(7.6)

and

(7.7)

Proof The implication "=:>" was shown in Theorem 7.2. Following the
proof of Theorem 5.4, we see that for 1" E Lp [0, 1J

For 1~p< 00 11f'llp~B[llfllp+IlcpY"llpJ, as was shown in [5, Chap.9J
using the Hardy inequality. As IIMnf- flip ~ 2 Ilfll p, the above implies for
1~p < 00

which completes the proof for such p. For p = 00 the moments fit exactly
the conditions in [4J, and therefore, the direct result is proved there.
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