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1. INTRODUCTION

The Bernstein-type integral operators discussed in this paper are given
by

1

M, f=M(fix)=(n+1) 3 Poy) [ P S0, (L)

k=0 0

where P, ,(x)=(1)x*(1 —x)"~* The expression (n+1) [} P, (¢) f(¢) dt in
the operators M, f takes the place of the expression f(k/n) in B, f, the
Bernstein polynomials. These operators were introduced by Durrmeyer {6]
and studied by Derriennic [2]. It was shown that M, f are positive con-
tractions in L, and are self-adjoint and commute, that is,
M, M, f=M,M,f These nice properties of M, f make them easier to
work with. In this paper we will study the relation between derivatives of
M, £, the rate of approximation of M, and the smoothness of the function
/- The smoothness of f is given, following [5], by

@ (fit)y= sup 45, 001, @)= (x(1—x))"%  (1.2)

O<hs<t

* Supported by NSERC of Canada, Grant A4816.

72
0021-9045/89 $3.00

Copyright © 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.



BERNSTEIN-TYPE OPERATORS 73

where

o ¥ . rh rh
45 flxy= 3, (k) (—l)kf(x+<—2-—k> h), if [x——2—,x+?]c [0,17,
45 f(x}y=0, otherwise.

(1.3)

We will construct an operator O, f using linear combinations of M, f and
show, for r >« (and @(x) as above), that

10, f=fl,= 0 )=l M f ||, = 0(n"~*) = 0} (f, 1),=0(*). (14)

Section 2 will contain a short discussion of w(f,?), and the related
K-functionals. Section 3 will contain the necessary facts proved in earlier
papers (see [2]) on M, f. In Sections 4 and 5 we establish the estimates of
1@ M1, and [0, f—, by (£, 1//n), and wZ(f, 1//n),, respec-
tively. The inverse results of (1.4) are obtained in Section 7, where

IM, f=fl,=0(n~") = w}(f,1),=0(), a<l, (1.5)

is also established. We note that (1.5) is valid for « <1 while (1.4) is valid
for a<r.

2. RESULTS ON MODULI OF SMOOTHNESS

For proof of our results we will utilize the K-functional characterization
of w},(f, t),. The K-functional in question is given by

K.(f. t’)p=irg}f{||f—gll,,+t’ legl, 5, 2.1)

where the infimum is taken on all g such that g " e AC,, (ie., absolutely
continuous in [a, ] for every q, b satisfying O <a<b< 1)
It was proved in [5, Chap. 2] that

Mo (f, 1), <K (f 1), < Mol(f, 1), (2.2)

which we denote by w/(f, ),~K,(f,¢"). A different characterization of
smoothness was given by 7,(f, ¥(1))

1 £x 1/p
v =] [ s [ e doax | pee,

(2.3)
T,(f; Y(1)) o = sup{|4;, f(x); A< Y(2, x), xe [0, 1]},
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where 4}, f is given by (1.3) and ¥(z, x) = te(x) + % It was shown in [8]
that 7,(f, ¥(1)),, , is also equivalent to K,(f, "), . The modulus 7,(f, ), can
be used in this paper as an alternative to @/,(f, 1),.

We define, for ¢(x)=(x(1 —x)),

K(fit),= _inf (If~gl,+7 1¢g"1,+1871,)  (24)

gr=VeACy,

and we will also use the equivalence [5, Chap. 3]

K(fs 1)y~ KAf 1), ~ 0 (£, 1), (2.5)

which is stronger than (2.2).

3. PROPERTIES OF M, f

For the convenience of the reader we will summarize here the properties
of M, f and related formulae which will be needed later. Most of these can
be found in [2].

A. M, fis a positive operator.

B. M,(l,x)=1, M, f preserves constants.

C. IM A, <Ifl,, I<p< oo, M,fis a contraction on L,[0, 1].
D. For feL,[0,1]

MU 0= 3 dan([[ 16 031 ) 00 G1)

where Q,, is the Legendre polynomial of degree m, i.e.,

V2m+1

m!

0, = (&) Gu—xr o omx1ad Q=

dx
(3.2)
and
_ (n+)al
T m—m) (n+m+ 1)

n,m

E. For a polynomial P, of degree k¥ M, P, is a polynomial of degree
min{k, n} [2, p. 337].

F. M, commutes with M,

min(nk)

MM =M M= 8 Dy ([ F00000) ) 0 33)
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G. Forf, geL,[0,1]
M, Sy =] ML g dr= [ SO0M,(g.1)di= (M, ). (39)

H. For fe L,[0,1]

() M0

(n+1)tnl "

1
3 Pu ) [ PO, (07 (1) e (35)

:(_l)r(n—r)!(n+r) =

I For feL,[0,1], f¥~VeAC,,, and ¢¥f? e L, we have, using
integration by parts,

(3) M50

m+Dtm 2

1
B Poionis0) SO0 dt, :
12 (n+ 21! kgo Pn—Zr,k(x)jo nt2mk+2A0) ) (3.6)

which can be rewritten as

o(x)” <%>2r M (f. x)
ey ki) a1 KV Pos  5) | P (0007 F20) i, (3)
where
aln, k)= (k+r)? _ n—k-r?

K+ (n—k)(n—k—2n)

4. THE DIRECT RESULT FOR @2 M2f

To show the direct part of
Il MOVf |, =0 ~) = 0X(f. 1),= O(t*),

we will prove the following more general direct result.
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THEOREM 4.1. For fe L,[0,1], 1<p< 0, 0Z(f, t), given by (1.2), and
o(x)?=x(1 — x) we have

19> ME | 0,17 < MA@, 1/3/n),. (4.1)

In fact, in view of (2.2), that is, K,.(/, t2’)p~wi’( /1), it will suffice to
prove the two inequalities given in the following two lemmas:

LemMa 4.2. For geL,[0,1], g VeAC,,, and ¢*g*’ e L,[0, 1] we
have

||(P2rM;(12r)g” L,00,1] < ”(erg(Zr)” L,[0,17" (4.2)
LemMA 4.3. For feL,[0,1]
H(Pergzr)f”L,,[o,u < Mn’ ||f||L,,[0,1]- (4.3)

Proof of Lemma 4.2. As a corollary of (3.7) and C of Section 3 we write

lo* M7 gll, <

n—2r 1
(1+1) Y Poe ) [ P (0) 0007 20) d
k=0

P

< @+1) T Puso) [[ Postt) ot 501
k=0

14

= 1M, (lo¥g*DI, < l0¥8®"
which completes the proof of the lemma.

Proof of Lemma 4.3. To prove (4.3) we divide [0, 1] into two parts,
E =[1/nm1—1/n] and E:=[0,1/n]u[l—-1/n,1], and prove (4.3)
separately for L,(E,) and L,(E;). For the proof on L,(E;) we observe

d 2r
(E) M) 1)= (n—2r)! 2)v Z P, o i(t) 4% a(n), (4.4)

where
ax(n) = 1+ 1) [ P, () £ () i (45)
and
Aay(n) = A(4" a,(n)) and dai(n)=a,, (n)—an). (4.6)
Since

2r —r
X <n and —<n
o(x) ”LW(E‘")\ (n—2r)!\ 5
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we have
10" ME N gty S | 'S Py al) A% ay()
Q " LP‘Eﬁ)\(n—Zr)! =, n—2rk k Lp(Ef,)
2r 2r n-—2r
<y ( ) S P )
P AW Py L,[0,1]

If we prove now for 0<j<<2r

<Clf] L,00,17> (4.7)

Lpf0,1]

‘ (f’l + 1) ni r Pn—2r,k(t) J: P"’k+j(x)f(x) dx

we will obtain
10 M 1y < C'2 1/ 10,11

To prove (4.7) for p= o0, we observe that

n—2r

(141) S Pyaal0) [ Pre () 1(x) d
k=0 0

Lof0,1]

n—2r
< ”f”oo Z Pn72r,k(x)= “f“oc
k=0
For p=1 (recall n=2r =j) we derive (4.7) by

-2

(1)L Pu s8] P ) (0]

L1{0,1]

1 1 (n—2r
nt { 5 Pn,k+,-<x)} ) dx<(”—”) T8

Th—2r+1d Paar n—2r+1

Using now the Riesz-Thorin theorem, we establish {(4.7) for 1 <p < c0.
We now prove (4.3) in L,(E,). It is sufficient to prove the result for
p=o0 and p=1 as we can use the Riesz-Thorin theorem to obtain from
these special cases the result for 1 <p < o0,
For L., we follow the proof of Lemma 3.5 of [3, p. 282] observing that
here we use [(n+ 1)a,(n)] < | fll» (see (4.5)) instead of | fk/n)< | fll -
For the L, estimate we again follow the proof of Lemma 3.5 of {3] and
observe that we have to estimate terms of the type

L, mn) =g, m(x)@(x)*">n" 3, (k—nx)” "2 "a(n) P, (X)L, 5.,
k=0
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where ¢,,(x) is a polynomial in x independent of » or k and
0<m<2r—2I, 0<I<r. We will show

L_ 0(x)2 =¥l |k —nx|?=2=m P, (x)dx < Cn'~, (4.8)
and therefore

I, mn)<Cin ! an |ax(n)|

i[ P, () 1/(1)] dt=Cyn £

To prove (4.8) we recall that
|k—nx|2'*2’*’"< |k__nx|2r721_+;1

and
r

! n
20—=2r 1 r
Lﬂ OGP P () de <’ [ Ppp(x) de <,

and therefore, it is sufficient to show
j @(x) " (k—nx)* P, ((x) dx < Cyn* 1. (4.9)
£y

Inequality (4.9) was proved in [5, Chap. 9].

5. DIReEcT THEOREM FOR AN APPROXIMATION OPERATOR

In this section the direct theorem about an approximation operator will
be proved pending several lemmas, which are of a technical nature and
which will be proved in Section 6. The operators we utilize will satisfy

2r—1

Onf= On(f; ’x)= Z Oci(n)Mnf(f; X), Rp=n<n < - <Ny SA”,

i=0

(5.1)
where A is independent of #,

O, x)=1, O, ((-—x)"x)=0 for m=1,.,2r—1 (52)
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(which means that polynomials of order 2r — 1 are preserved), and

2r—1

2 ladm)l <B, (5.3)

where B is independent of n. Note that O, f, a4{n), 4, and B change with
choice of r. In the next section we will show in a constructive manner that
such operators exist.

We will also need the following two lemmas which will be proved in the
next section.

LemMA 5.1. For T, (x)=M,((x—)", x} we have

1 5
Tl <Cn (0P 4] (eP=xi=x) (54

LeEmMA 5.2. For H, . (u) given by

H, .(u)=(n+ U’”{LI Lu —j: r}

u

x(u—ty" ! Z P, ()P, (x)dt dx, m>0, (5.5)
k=0
we have

1 s
ol <on (prer)  GEF=xi-x.  (56)

We also need the following lemma.
LemMma 5.3, Suppose @el,,0<t<1, 0<x<1l, a>0, and
o(x)? =x(1 —x). Then

(t_x)2ral

< ——— e
(p(x)* + o)

Jt(t——u)z"l¢(u) du

[ (ol + oy 1) 1du|. (57)

Proof. For x=0 or x=1 the result is trivial. For 0<x<u<r<1 we
have u>x, o/(1—u)>a/(l—x), and therefore, 1/(u+o/(1 —u}}<
/{1 +a/(1 —x)). We also have (1 —u)/(1 —u)<{t—x)/(l —x)and 1t —u<
t —x, and therefore,

640/56/1-6
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2r—1 I—x 7 % ! 1 2 r
== <) (-0)(x+15)) iy 0+

B (t_x)2r—1

~p(x)* +ay

(p(u)* +a).

For 0<t<u<x<1! we use (u—t)u<(x—1t)/x and 1/(1 —u+ (a/u)) <
1/(1 —x + (o/x)) to obtain the same resulit.

We are now in a position to prove the direct result.

THEOREM 5.4. Suppose O, f satisfies (5.1), (5.2), and (5.3). Then for
1<p< 0 and p(x)*=x(1—x)

10, f =1L, < Lo (f, 1/3/n),- (58)
Proof. We observe that (5.3) implies
10, f—f1l,<B+1) 111,

Using Ko, (f, ), ~ Ky, (f, t*"), proved in [5, Chap 3] (see also (2.1), (2.4),
and (2.5)), it is now sufficient to show for g~ Ve AC and g in L, that

1\"
<(p2 +_) g(Zr)
n p

<Ly~ o¥g® ||, +n= 118l ,). (59)

10, g—gll,<L;n™"

We expand g by the Taylor formula

(t_x)Zrﬁl

(2r—1) R t
(2’___1)' 4 (x)+ 2r(g> >x):

gt)=g(x)+(t—x)g'(x)+ --- +

where

1 t
Ry(g, 1, x) =@r—1)i j (t—u) ="' g (u) du.

The identities in (5.2) now imply
On(ga )C)—-g(X) = On(Rzr(g’ ) X), X),
and therefore, using (5.1) and (5.3), it is enough to show

1 I
2,2 (2r)
(7+5) ¢

[IMn(Rin(g’ ) )C), x)”pSLEXnir

(5.10)

P
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In fact we have to show this only for p=o and p=1 and by the
Riesz—Thorin theorem it will follow for 1 < p < o0; but the proof for p=
and that for 1 <p< oo are the same. Using the Riesz—Thorin theorem,
however, it is clear that L, in (5.10) is independent of p. To prove (5.10) we
recall the definition of the maximal function of ¥, .# (i, x), given by

A, ) =sup | — [ lw(u)ldul

We define for ¥ given by y(u) = (@(u)? + 1/n)" g (u) for ue [0, 1] and
Y{uy=0 otherwise, # (Y, x)=G(x). Using Lemma 5.3 with a=1/n, we

obtain
C—x)” G(x), x)

1
|M,(R>(g, -, x), x)| <SG =1 l M, (m

H

and therefore,

”Mn(R2r(g7 "y X), -x)”p< |

10"
,X)(¢(X)2+—> |
H1)

o

We complete the proof for 1 <p < oo by recalling that the estimate

<Cn™'

=X

1 -—r
=20 (0004 )

is in fact Lemma 5.1, and that the estimate

1\
((p2+~> g(Zr)
n

for 1 <p< oo is the well-known result on maximal functions. To prove
(5.10) for p=1 we write, using Fubini’s theorem,

1Gl,<C,

P

J: lM"(RZI'(g, " X), X)l dx

<ot [ Pk [ Pt

0 k=0

dt dx

(=)t g% () |du
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s [eewl{] -]

u

X (u—t)r=! Z P, ()P, (x)dt dx du

T )‘j | @ ()] |H, o (u)] du.

Lemma 5.2 will now conclude the proof of (5.10) for p=1.

6. LeMMAS ON O, f AND M, f

As O, f would not be the operator with the minimum number of terms
satisfying |0, f—f] p< Cw f 1/\/— ), anyway, we will construct a
relatively simple version of it. That is, we assume that n,=2n,
i=0,..,2r—1. First we will need the following lemma.

LEmMMA 6.1. For M, f given in (1.1) we have

m

M, ((-—x)";x)= ) P[x) ﬁ (I/n+i+1), m=1,2,., (6.1)

I=1
where P{x) are polynomials in x independent of n.

Proof. We calculate first M,(f;, x) for f(t)=1,

M )= (141) ¥ Pos(d) | Pos(t)

n Wk +i)! 1
=(n+1) ]Eo P,,,k(x)—('%&i—);];fo Pixedt)dt

e (k+1)---(k+i)
_,EO mi (n+2)---(n+i+1)

We observe that

k+1)---(k+iD)=k(k—1)-- (k—z+1)+z +1]_[(16—1)—}-C0,

j=0 =0
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where for i=1 the second term drops, and obtain

M(fox)=({(n+2)---(n+i+1))!

-2
x[xin~--(n—i+1)+ > Cijj“n-:‘(n—j)%—CO}
j=0
Expressing n---(n—1{) in terms of n+2, (n+2){rn+ 3}, ... and their com-
binations and writing (1 — x)" =Y, (")}(—x)™ "' f;, we obtain (6.1).

LemMA 6.2. For n,=2m, i=0,1,..,2r—1, there exist u{n) such that
O, (f, x) given by (5.1) satisfies {5.2) and {5.3) and moreover a n)— ;.

Proof. Using Lemma 6.1, we have to calcuiate «,{n) satisfying (for » big
enough)

2r—1 2r—1 s
Y an)=1 and Y ooan) [] @n+0)1=0,5s=2,.,2r.  (62)
i=0 =2

i=0

Using Cramer’s rule and the Vandermonde determinant, we observe that
for a; satisfying

2r—1 2r—1
Y =1 and Y «27"=0, m=1.,2—1, (63)

i=0 i=0
we have a solution and that «,(n)=a;+ O(1/n).
To complete the proof of Theorem 5.4 we still have to extablish
Lemma 5.1 and Lemma 5.2. We will prove a somewhat more general resuit

which will be needed internaly in the proof of these lemmas as the proof is
by induction. Lemma 5.1 is an immediate corollary of the following lemma.

LemMma 63. For T, (x)=M,((x—-)", x) we have

T, 2(x)= Z Pisn(X) (x“ —x))s_i no¥ (6.4)

n

and

1

Gi5,n(X) ( (6.5)

n

Z x(T—=x)\*" "
Tn,2s—1(x)=: z ) H 2+*3

0

where g, ,(x} and p;, (x) are polynomials in x of fixed degree with coef-
ficients that are bounded uniformly for all n.
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Proof. The proof follows by a simple induction process from the known
recursion relation [2],

(n+m+2)T, 1 1(x) = x(1=x)[2MT, ;- 1(x) = T}, m(x)]
—(1=2x)(m+ )T, ,,(x) (6.6)

and the fact that 7', o(x)=1and T, ;(x)= — (1 —2x)/(n +2).

Remark. We can observe that g, , ,(x) are divisible by (1 —2x) and that
Po,smlx) and g ;. (x)/(1 —2x) are constant in x.

Lemma 5.2 is an immediate corollary of the following lemma.
LemMa 6.4. Suppose H, . (u) is given by (5.5) of Lemma 5.2. Then
n 1
Hop)=n 3 Pys) | (= 1)"Py g y(1) dit a1
k=1

+ (1 —uy*ttum, (6.7)

(mtm+0)H, ,(W)=u(l—w)[2mH, ,_(u)—H, . (u)]

— (1 —2uymH, (1), (6.8)
H,2,(u)= g P, (x) <x(1n_ X)>S_ P -2 $>0, (69)

and
Hoaa= %, 0o (T22) a2 im0 60)

where P,, (x) and Q,, (x) are polynomials in x with coefficients bounded
inn.

Proof. We first deduce (6.7) from (5.5), then (6.8) from (6.7), and after
computing H, ;(u) and H, ,(u), (6.9) and (6.10) will follow (6.8) by induc-
tion, as (6.4) and (6.5) followed (6.6). We could have set H, o(u)=1 as
indeed follows from (6.7), and as (6.8) is a corollary of (6.7), we may
calculate only H, ,(u), but since H,,(u) is not defined by (5.5), we
calculate H, ,(u) as well.

We now write
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H, ()= (n+1)m U -1 ” (w—1y"=" ; P, u(x)P, (1) dt dx
=m [ =1y 12 Pty di—(n+ m | "=
x Eo P i(8) P, (%) di dx
—(n+1)m L jol (;— fyn=t ZO Py 1) P () di dx
+(n+)ym jo L (u— )" éo P, 1) P, (%) di dx

—u"— (n+1)m j fl (u— 1y 2 P, ()P, o(x) dt dx.

From the above we can easily calculate

H,(1)=0 and H, (u)=

2
1—u). 6.11)
n+2u( ) (

We now recall that P, ,(x) =n(P,_, x_,(x)— P,_, «(x)) and obtain, using
integration by parts,
1
m J (u—1ty"~'P, (1) dt
4]
1
= (=" P, () + 4P, (0) 47 | (u— )"
0

X[P,_yp ((1)—=P, 1 4(2)] dt

Recalling that P, ,(1)=46,, and P, (0} =3J, ., and using the expression for
H, .(u) that we calculated, we have

H, () =u" +(u—1m(n+1)j X" dx— "‘(n+1)j (1 —x)" dx
—n(n+1)f"j1 (u— 1y

XS o) Py i (0)— Po ()] dt dx

k=0
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— (u_ l)mun+1 + u’"(l ___u)n+1

~n(n+1)f1 (u—on™

wun—1
x [0 X [Py s(0) = Pagl0)] Py il0) i
k=0
=(u_1)mun+l+um(1_u)n+l
1 n—1
+”.f (u=1)" Y Poyy (@) P,y 4(2)dl,
° k=0

and therefore, (6.7).
To prove (6.8) we write
Ln,m(u) = un+1(u__ l)m + (1 - u)n+1um,

and observe that (6.8) is valid for L, ,,(u) in place of H, ,,(u). This is done
using straightforward computations. That is,

wu(l—w)| 2mu™ u— 1) 4 2m(1 —u)* ™!
*Ed& {u"“(u—l)”’+(1—u)"“u"’}]
— (1 =2u)ym[w" (u—1)"+ (1 —u)y"*'um]
—m[ = — 1)+ (1 — )" 20
+(m+ D[ (u— )"+ (1 —u)" T lum* 1]
[ = 1) = 1y
(=) 2 (L= ) 1

=(n+m+l)[un+l(u_l)m+l+(l_u)n+1um+1].

We now need to prove (6.8) for H, ,(u)—L, . (u)=A4,,(u). Recalling
u(l—u) P, o(u) = (k —nu) P, (u),

we write for 4, ,,(«) as above
d
u(l —M) EAn,m(u) ‘mAn,m—l(u)

Sl =) 3 Py alw) [ (w07 Py () d
k= 0

1
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n

1 % Pl [ o= 1t D) P (1)

k=1

=1 ¥ Pyis@) | =07 (= D= (= 1))

—(n=u—0)+ A =2u)]P, ; (t)dt

) Prrsli) [ (w11 =P, (1)

- (n - I)An,m+ l(u) + (1 - 2u)An.m(u)

=h i P,y i(u) f: {mu—1y" "'l —1)

k=1

—(1=20)(u—=1)"} P,y pi(t) dt
- (l’l - I)Afx,m+1(u)+ (1 —2u)An,m(u)
= Y Pyosalt) [ {—(mt 21y
k=1 0
—(m+ D)1 —=2u)(u—t) +mu(l —u)}
X(W—1)"""P,_ s () dt—(n—1)A, .o (u)

+ (1 - 2u)An,m(u) = —(I’l +m+ 1) An,m+ 1(”)
- m(l - 2u)An,m(u) + mu(l - u}An,m— 1(”)9

which is what we wanted to prove.

7. THE INVERSE RESULTS

In this section we will deduce the bahaviour of wZ{(f,¢), from the
behaviour of | MZ7f|, or that of |3 «,M, f—f1,.

TueoreM 7.1. Suppose feL,[0,1], M,f is defined by (L1),
o(x)*=x(1—x), and o <r. Then

lo* MEf Il = O~ *) = wZ(f, 1), = O(1>). (7.1)

Proof. The implication “<=” was proved in Theorem 4.1, and in fact a
more general result was shown. To prove the implication “=" we will show
that for any &

lo*M@f| <An”~*  implies wX(M,f, 1), <A B>, (1.2}
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where B may depend on r and o but not on &k (and certainly not on #). This
will be sufficient as we write

w0y (f, ), S0Y(f— Mif, 1), + 0y (M £, 1), < C | f— M|, + ABt*

and let k& tend to oo.
Using [5], wZ(ft),~K,(f,t), (see (22)), and the definition of
K, (f, t*),, we have

: d 2r
KoM f, 87), < IMy f = O, M f ], + 7 | @(1)* (—) 0,(Mf, 1)

dt

p
We choose O, to be that given in Theorem 5.4, and therefore,

|M,f— 0, My [, < LioZ(M, f, 1//n), <LKy (M f;n77),,
where L is independent of »n and k. Moreover, using the definition of O,,

we have

<A, max

0<ig2r

r

oty (%) 0u04es0 o7 (%) MM S0

P

Lemma 4.2 and formula (3.3) will now imply

=|ow (&) monsn

< |I¢2rM§2r)f”p < Alr_a.

d 2r
lom (£) Mot o

14

Writing 2'n for /, and combining with the above, we obtain
KoMy f, 1), S L Ko (M fyn ™), + Ayt =%,

We choose n such that 1/\/r_t<t/R< 1/./n—1 where R is to be chosen
later and obtain, repeating the argument m times,

K, (M, f, tzr)p <LK (M f, (t/R)zr)p + 4, R¥1*
SLIKy (M, f, (t/R)¥), + 4, RVt + A, R¥L,(t/R)*
S LYKo M f, (/R)*™),
+ AR P*(1+ L /R* + - + (L /R™)"~1).

We choose R (R>1) such that L,/R*<1/2 and recall, using Lemma 4.3,
that

LYKo (M f, (t/R)*™), S LY(H/RY™ | MPS |,
SLY(Y/RY™ Ck" | f1l-
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Since k is fixed and L,/R* < 1/2, we have
lim LKy, (M, f; (t/RY™), =0,

m — O

Therefore,
Ky (M f, 1), <24, R¥1*
which concludes our proof.

THEOREM 7.2. Suppose

ky
O0,f=) w(n)M, f, n=ny<ng--- <n,<An and
i=0 (7.3}

z le{n)| < B.
Then
10, f=fl,=0(n"*) implies wi’(f, t)p=0(t2°‘) for r>a  (7.4)

Remark. Note that the requirement that O, f actually approximates fis
hidden in O, f—f|,= O(n~*) and that condition (5.2) of Theorem 5.4 is
not necessary.

Proof. Using the K functional (rather than wZ(, 7),), we write

Ko fs ), < N0, f=fll, + 17 |90,
Theorem 4.1 now implies
I 0@ I <B max "M <B-MoZ(f, 1//n),
SCK(finT),.
As our assumption is [{Q, f—f|| ,< An™% we have

K2r(f; tzr)p <dAn 4+ CterZr(f; # —r)p7

and this implies, via the Berens-Lorentz lemma [1], that if a<y,
KZI(J{; er)p < Cltza'

We now have as a corollary:

CoroLLary 7.3. For O, f given in Theorem 5.4 and q<r

10, f=fl,=0(n"*) = wZ(f 1),=0(>). (7.5)
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We also have as a result (partially a corollary) the following direct and
inverse theorem on M, f.

THEOREM 7.4. For M, f given in (1.1), 1<p< o0, and o<1
IM, f=fl,=0n"") = oZ(f 1),=0() (7.6)
and

1M, f=f1l,< C@2(f, 15/n), + 17 IS 1L, (7.7)

Proof. The implication “=>" was shown in Theorem 7.2. Following the
proof of Theorem 5.4, we see that for /" e L,[0, 1]

r ., 1 . |
1My f= 1 <A U+ 16 1171, |

For 1<p<oo |fI,<BLIfI,+ll¢*"ll,], as was shown in [5, Chap. 9]
using the Hardy inequality. As || M, f—fl,<2 | f|,, the above implies for
I<p<w

1M, f=fl, <CUK(S 1), +n LIS S CES(f 1), + 0 LD,

which completes the proof for such p. For p= co the moments fit exactly
the conditions in [4], and therefore, the direct result is proved there.
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